PURPOSE

Understanding the abundance and the spatial interactions of immune cells in heterogeneous tissue samples is pivotal to improving clinical outcomes for psoriasis patients undergoing immunotherapy. Various multiplexed imaging platforms have been recently developed to visualize immune cell subtypes in tissue samples with varying distribution patterns involved in autoimmunity.

However, the lack of tools that allow for the analysis of spatial patterns is a major barrier for systematic analysis of cellular interactions in the dermal microenvironment. Here, we present data on immune cell distribution of lesional skin biopsies from psoriatic tissue using hi-plex immune fluorescence Chipcytometry technology.

MATERIAL AND METHODS

Chipcytometry is an image cytometry platform that has previously been used in biomedical research to perform immune cell phenotyping and cell function assessments, such as intracellular cytokine production, cell proliferation, apoptosis and tissue cytometry [1,2,3,4].

Using fresh-frozen tissue biopsy samples from two psoriasis patients, we developed a prototype assay for monitoring FoxP3 positive cells and checkpoint signaling using commercially available antibodies.

TI-PLEX IMMUNE CELL PHENOTYPING						
Marker	Antibody Clone	Vendor	Dilution	Fluorophore	Compartment	
CD3	UCHT1	BD Biosciences	1:30	BUV395	Surface	
CD4	RPA-T4	Biolegend	1:30	PE	Surface	
CD8	RPA-T8	BD Biosciences	1:30	BUV395	Surface	
CD39	A1	Thermo Fisher	1:250	Alexa Fluor 488	Surface	
CD45	HI30	BD Biosciences	1:100	BUV395	Surface	
CD278	ISA-3	eBioscience	1:30	PE	Surface	
CD279	MIH4	eBioscience	1:30	PE	Surface	
Collagen IV α1	1043	Novus Biologicals	1:30	PE	Surface	
Laminin y1	A5	Novus Biologicals	1:30	PE	Surface	
Pan-Cytokeratin	C-11	Novus Biologicals	1:30	PE	Cytoplasm	
FoxP3	236A/E7	eBioscience	1:30	PE	Nucleus	

High-Parameter Profiling of Psoriatic Tissue

Anja Mirenska¹, Heath Guay²and Jose Estevam² ¹Zellkraftwerk, Germany; ²Takeda Pharmaceuticals Inc., Cambridge, MA USA

PRINCIPLE AND EQUIPMENT

The Chipcytometry Workflow

WORKFLOW

STEP 1: TISSUE ORIENTATION (TRANSMITTED LIGHT)

STEP 2: AREA OF INTEREST SELECTION

Collagen IV

pan-Cytokeratin

STEP 4: PHENOTYPE

pan-Cytokeratin FoxP3 CD4

STEP 5 (OPTIONAL): SEGMENT/QUANTIFY

pan-Cytokeratin DAPI

Cytobot® - Chipcytometry Instrument

STEP 3: QUALITY CONTROL

Collagen IV pan-Cytokeratin

CD45

STEP 6: LOCALISE CHECKPOINT SIGNALING

Pop

Overa FoxP3

collagen IV).

CD45 was used as fitness biomarker for sample quality control (to provide confidence that biomarkers have not been damaged during sample handling).

Immune cell infiltrates containing large T cell numbers including CD4+ T helper cells, CD8+ T effector cells and FoxP3 T-cells were detected in psoriatic skin.

PD-1.

Cytokine staining (IFN^γ, IL-17A, IL-17F, TNFα) was negative, confirming previous findings that cytokines should only be stained on digested tissue (Welzenbach et al., 2015)

RESULTS AND SUMMARY				
lation	PD-1 expression			
all T cells	Low			
3 T-cells	Medium-high			

•11 biomarkers were successfully stained on a lesional tissue section of a psoriatic patient.

Characteristic morphology (enlarged epidermis) was detected by staining with tissue orientation biomarkers (pan-cytokeratin, laminin,

Some FoxP3 T-cells were found to express the checkpoint protein

CONCLUSIONS

We conclude that high parameter tissue phenotyping of psoriasis tissue samples is technically feasible and can be used to generate high quality biomarker data. Profiling of the target expression in diseased tissues is a useful tool for drug development not only in psoriasis but also in a large range of other diseases that are driven or accompanied by altered immune responses.

REFERENCES

[1] Henning et al. Cytometry A (2009). A versatile platform for comprehensive chipbased explorative cytometry.

[2] Happle et al. Science Translational Medicine (2014). Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary protenosis.

[3] Roesner et al. Journal of Investigative Dermatology (2015). Der p1 and Der p2specific T cells display Th2, Th17, and Th2/Th17 phenotype in atopic dermatitis. [4] Zeng, et al. Poster at NBC 2015: Comparison of human whole blood immunophenotyping by ChipCytometry and Flow Cytometry: Potential applications for biomarker identification and immunomonitoring in clinical studies.

ONCOLOGY